

INTERNATIONAL FEDERATION OF FERTILITY SOCIETIES

Obstetric and paediatric outcomes following assisted reproduction

IFFS Workshop Tartu, Estonia, 2018

Int@FedFertilitySoc

www.iffs-reproduction.org

Richard Kennedy

Director of Obstetrics, University Hospital Birmingham President, IFFS

No declarations or conflicts

Richard.kennedy1@heartofengland.nhs.uk

www.iffs-reproduction.org

@IntFertilitySoc

Int@FedFertilitySoc

Educational objectives

- Maternal outcomes
- Neonatal outcomes
- Singleton vs Multiple pregnancy
- Does ART increase the risk of birth defects?
- Long term outcomes

Ectopic pregnancy

Heterotopic pregnancy

0.3-1% of ART pregnancies Rizk et al. Am J Obs & Gyn(1991);164:161-164

Vanishing twin

10.5% singletons originate from twin pregnancies Significantly higher rate of preterm delivery cf singleton **Zhou et al EJOG (2016) 203:35-39**

Mean gestational age 35.1+/-3.7 versus 38.2+/-2.6 weeks (P=0.001) cf singleton controls Almog. Reprod Biomed Online (2010) 20(2): 255-260

Prevalence 10.4% of IVF singletons Birth weight <2500 g: OR 1.7 Cl 1.2-2.2 Birth weight <1500 g: OR 2.1 Cl 1.3-3.6 **Pinborg Human Reprod (2006) 21(5):1335**

Key Practice Points

- 1. Always suspect ectopic pregnancy after ART
- 2. If more than one embryo is replaced at IVF the presence of intrauterine pregnancy does not exclude ectopic think heterotopic
- 3. Diagnosis of vanishing twin increases risk of preterm labour

Maternal Outcome of singleton pregnancies conceived following ART

Severe maternal morbidity

ART cf Fertile deliveries. Cesarean Section: OR, 1.67; Cl, 1.40-1.98 ART cf Subfertile deliveries. Cesarean Section: OR, 1.75; Cl, 1.30-2.35 Luke. Am J Obstet Gynecol. 2017

APH

IVF vs NC n= 6730 – regional retrospective cohort OR 2.0; Cl 1.8-2.3. Healy. Hum Reprod 2010 Systematic review n=20807. OR 2.49; Cl 2.30-2.69. Pandey Hum Rep Up 2012

Hypertensive disease

Systematic review, n=16923 OR 1.49; Cl 1.39-1.59 Pandey. Hum Reprod Update 2012

Gestational diabetes

Systematic review, 16 studies. **RR 1.69; CI 1.19-2.42**. Systematic review n = 13399. **OR 1.48; CI 1.33-1.66**. **Pandey Hum Rep Up 2012**

Prevalence of placental incidents in ART pregnancies

Healy et al Hum Reprod. 2009;25(1):265-274.

Key Practice Points

1. IVF pregnancies are higher risk related to the underlying demography and maternal health

2. Careful imaging of placental site is indicated

3. Access to MRI

Neonatal outcome – singleton ART

- **Congenital abnormalities** slight but significant increase
- Hospitalisation 0-5 years OR 1.3
- Stillbirth / PNM OR: 1.82; Cl 1.34-2.48. Davies J Dev Orig Health Dis (2017) 8(4):443-447 – S Australian birth cohort. OR 4.44, Cl: 2.38-8.28 Danish national cohort Wisborg Hum Reprod 2010; OR 1.90, Cl 1.57-2.30. Ombelet. Facts Views Vis Obgyn (2016) 8(4) 193-204. Belgian national cohort
- NND OR: 2.04; Cl 1.27-3.26 Davies J Dev Orig Health Dis (2017) 8(4):443-447
- CP OR: 2.30, Cl 1.12-4.73 after adjustment for preterm birth and multiplicity Zhu, Hum Reprod 2010

Pre-term labour - Singleton pregnancies

17 studies n= 31,032

RR 1.84; CI 1.54, 2.21

McDonald et al. EJOG (2009) 146;2:138-146

Systematic review; 2 studies eSET singletons cf NC singletons

Grady et al. Fertil and Steril (2012) 97: 324-331

 IVF/ICSI vs NC (subfertile) TTP > 1 year :
 OR 1.55; CI 1.30, 1.85

 IVF/ICSI vs non-ART siblings:
 OR 1.27; CI 1.08, 1.49

Pinborg et al Hum Reprod Update. 2013;19(2):87-104

Li et al Lancet, 385;9966: 430-440 (January 2015)

Multiple pregnancy and LBR following ART global data

Sources: HFEA(2016); SART(2017); NPEU, Australia (2016); EIM (2016); RedLARA (2017); ANARA (2017); JSRM (2017)

Severe maternal consequences of twins cf singletons

Santana et al Obstetrics & Gynecology (2016) 127(4):631-641

Neonatal risks of multiple pregnancy

- Pre-term labour OR 9.9, Cl 8.7-11.3 Pinborg AOGS 2004 Danish Cohort. 18.7x cf singletons. Chambers JAMA Paediatric 2014 168 (11): 1045-53
- SFD 3.6x Chambers JAMA Paediatric 2014 168 (11): 1045-53
- SB 2.0x Pinborg AOGS 2004 Danish Cohort; 5.0x Cheong-See BMJ (2016); 354:i4353 GONet Collaboration
- NND 6.4x
- Readmissions 1-5y OR 1.3 (1.2-1.4) Chambers JAMA
 Paediatric 2014 168 (11): 1045-53

Cerebral Palsy

CP – small cohort study twins cf singletons OR 10.2 Petridou et al, 1996

Swedish national cohort Prevalence: <28 weeks 71.4/1000 births; 39.6 at 28-31 weeks; 6.4 at 32-36 weeks and 1.41 >36 weeks. Himmelmann Act Paediatric (2014) 103(6): 618-624

3.5 x cf singletons birthweight <1,000 g, 25x cf normal Smithers-Sheedy Dv Med Child Neurol (2016) 58 Supp 2:5-10

OR 2.18 CI: 1.71-2.77

Hvidtjorn et al Arch Pediatric Adoles Med 2009 163(1):72-83

Frozen vs fresh ET singletons

Antepartum hemorrhage Preterm birth Small for gestational age Perinatal mortality

hage RR = 0.67, CI 0.55-0.81RR = 0.84, CI 0.78-0.90age RR = 0.45, CI 0.30-0.66RR = 0.68, CI 0.48-0.96

Maheshwari et al Fertil and Steril (2012) 98(2):368-

LBW PTB **Post-term birth** LGA Macrosomia Perinatal mortality OR 0.81, CI 0.71-0.91 OR 0.84, CI 0.76-0.92 OR 1.40, CI 1.27-1.55 ** OR 1.45, CI 1.27-1.64 ** OR 1.58, CI 1.39-1.80 ** OR 1.49, CI 1.07-2.07 **

Wennerholm et al. Hum Reprod (2013) 28(9):2545-53

 Preterm birth
 OR = 1.14, 95 % CI: 1.02, 1.28 (higher risk with fresh)

 Low birth rate
 OR = 1.48, 95 % CI: 1.37, 1.60 (higher risk with fresh)

 Cesarean section rate
 OR = 0.85, 95 % CI: 0.80, 0.91**

 Zhao et al. Reprod Biol Endocrinol (2016); 14(1):51

Key Practice Points

- 1. Multiple pregnancy substantially increases risks to mother and babies
- 2. Infertility practitioners should make every effort to reduce the likelihood of multiple pregnancy and advise their patients of the risks

Evidence for birth defects following ART?

Bergh et al, Lancet; 1999 - retrospective cohort study, Sweden – 5856 IVF singletons, (1982-95) malformations occurred in 5.4% of all babies in the in-vitro-fertilisation group (1.39 [1.25-1.54]), rates of neural-tube defects and oesophageal atresia were higher cf to controls.

Hansen et al, N Eng J Med, 2002 – population based study, Australia. 1038 offspring – OR 2.0; Cl 1.3-3.2

Halliday et al, Hum Reprod; 2010 – population study, Australia OR 1.36 (1.19-1.55) 1991-2004

Yan et al, Fertil and Steril; 2011 – population based study, China; 15,405 offspring – cf NC - no difference

Studies biased by ascertainment due to more stringent follow-up of ARTconceived babies, are confounded by many other influences, have lacked proper controls, may be based on extrapolation hypotheses and are often of insufficient sample size.

Birth defects in ART conceptions

	ART	NC	Un OR	Adj OR
Any defect	361 (8.3)	16,989 (5.8)	1.48 (1.32–1.65)	1.30 (1.16–1.45)
IVF				
All	105/1484		1.25 (1.02–1.52)	1.06 (0.87–1.30)
Fresh	71/1005		1.25 (0.98–1.59)	1.05 (0.82–1.35)
FET	34/479		1.24 (0.88–1.76)	1.08 (0.76–1.53)
ICSI				
All	91/939		1.72 (1.38–2.15)	1.55 (1.24–1.94)
Fresh	76/713		1.95 (1.53–2.48)	1.73 (1.35–2.21)
FET	15/226		1.17 (0.70–1.97)	1.10 (0.65–1.85)

Infertile but no history of treatment with assisted reproductive technology 52/600 1.54 (1.15–2.05) 1.37 (1.02–1.83)

Davies et al; N Eng J Medicine 366;19 2012

ART singletons and birth defects

Relative weight 0.03 0.08 0.22 1.32 0.98 7.89 9.78 1.68 1.51

> 26.54 2.27 14.32

5.48 10.71 11.20

1.85
 0.23
 0.41
 1.40
 0.22
 1.40
 0.12
 0.39

Study name	Subgroup within study	Statistics for each study			Risk ratio and 95% Cl				
		RR	Lower limit	Upper limit					
Verlaenen 1995	IVF	6.11	0.30	123.10			+		
Apantaku 2008	Both	3.50	0.60	20.42			┼╺┼	\rightarrow	
Isaksson 2002	Both	2.17	0.74	6.36			┢╸┼		
Sagot 2012	Both	2.00	1.30	3.09			+ − 1		
Wen 2010	Both	1.61	0.97	2.67			+		
Katalinic 2004	ICSI	1.53	1.28	1.83			.		
Hansen 2012	Both	1.53	1.30	1.80			÷		
Olson 2005	Both	1.44	0.98	2.12			+		
Westergaard 1999	Both	1.43	0.95	2.16			+		
Kallen 2005	Both	1.39	1.26	1.53					
Dhont 1999	Both	1.36	0.98	1.90			-		
Halliday 2010	Both	1.36	1.19	1.55					
Klemetti 2005	Both	1.30	1.05	1.61		- - -			
Pinborg 2010	Both	1.27	1.09	1.48		-			
Davies 2012	Combined	1.26	1.08	1.46					
Fujii 2010	Both	1.17	0.81	1.69		-∔∎			
Koivurova 2002	IVF	1.13	0.40	3.17			<u>+</u> ─		
Palermo 2008	ICSI	1.06	0.49	2.33			+		,
Ombelet 2005	ICSI	1.02	0.67	1.56					
Koudstaal 2000a	IVF	1.00	0.35	2.89		- - -	<u>+</u> − 1		
Wang 2002	Both	0.95	0.63	1.46				′	
Bowen 1998	Both	0.93	0.22	3.84	<u> </u>		↓ /		
Shevell 2005	Both	0.90	0.40	2.01		- 	-//		
Pooled estimate sing Chi ² =19.61, P=0.607	gletons n=23 , l ² =0%	1.36	1.30	1.43		•			
				0.1	1 0.2	0.5 (1)	2 5	10	

Hansen M et al. Hum. Reprod. Update 2013;19:330-353

More birth defects ART

Fewer defects ART

Urogenital abnormalities

Danish National Cohort Study

Fedder et al: Hum. Reprod. (2013) 28 (1): 230

Hypospadias 1.37 (0.14-4.02) p=0.22

Testicular maldescent 1.37 (0.35–4.87) p=0.04

Imprinting disorders

- Variable phenotype
- Facial recognition
- Macroglossia
- Macrosomia third Tri
- Abdominal wall defects
- Heart (20%)
- Renal tract
- Hyperinsulinaemia 30%
- Embryonal cell tumours (7.5%)

Cardiac anomalies

Outflow tracts and ventriculo-arterial connections adjusted OR 1.7 95% (CI 1.1–2.8)

Cardiac neural crest defects and double outlet right ventricle without ventricular hypoplasia (adjusted OR 1.8 95% (CI 1.0–3.3). OR included null value when multiples were excluded. Tararbit et al. European Heart Journal (2011) 32, 500–508

TOF adjusted OR 2.4, 95% (CI: 1.5–3.7); adjusted OR: 3.0, 95% (CI: 1.0–8.9) (ICSI). Tarabit et al, Human Reproduction (2013) 28, 2: 367–374

41 studies n=25000 All types CHD, singleton pregnancies OR, 1.55; 95% Cl, 1.21–1.99; *P* = 0.0005 Giogiorne et al Ultrasound in Obstets & Gynaecol (2018) 51: 33-42

Cancer risk

Kallen et al, Paediatrics. 2010 126, 2 Swedish Cancer Registry RR 1.42 (Cl 1.09-1.87)

Hargreave et al, Fertil and Steril 2013; 100: 150-161 Systematic Review RR = 1.33 (Cl 1.08–1.63)

Williams et al N Eng J Med. 2013 369; 19 UK HFEA: 106,013 1992-2008 108 cancers cf 109.7 expected RR 0.98 (0.81-1.19)

Key Practice Points

- 1. Babies born following IVF/ICSI have a small but significant increased likelihood of birth defect
- 2. Reassure patients that this risk is small and is likely to due in part to underlying fertility
- 3. Routine imaging for fetal abnormality is indicated

Long term cardiovascular consequences for offspring conceived through ART

Xiao-Yan et al. Fertil & Steril (2017)107;3:622-631

Long term mental health and neurodevelopment following ART

Mental health outcomes in adolescence	Summary of effect
Cognitive function	\uparrow \leftrightarrow cognitive scores
School performance	\leftrightarrow educational achievement
Neuromotor development	\leftrightarrow
Social functioning and behaviour	\leftrightarrow both at home and at school
Attention-deficit disorder	\leftrightarrow
Autism	\leftrightarrow
Depression	$\uparrow \leftrightarrow$
Binge drinking	↑ \bigcirc more than \bigcirc
Smoking	\leftrightarrow
\uparrow increased: \leftrightarrow no effect: \bigcirc female: \bigcirc	male

"Reassuring evidence re mental health outcome. Potential associations with risk of CP and developmental delay, appears to be explained by obstetric factors rather than IVF"

Hart and Norman. Hum Reprod Update(2013) 19, 3: 244–250

Long term development

Denmark (Aarhus) Cohort study All treatments cf NC with (subfertility) or without delay (fertile) in conception

School difficulties age 9-11 (n=211): 9th Grade – age 16 (n=203): Senior grade – age 19 (n=154): Intelligence – age 19 (n=90):

RD 1.0 (0.7–1.4) all subjects NS all subjects NS RD 0.5 (–1.6 to 2.5)

Bay et al. Fertil & Steril (2016); 106: 1033-1040

Key Practice Points

- 1. Long term monitoring of children conceived following ART is not required per se
- 2. The importance of universal collection of data on ART processes and outcomes is stressed

Conclusions

- ART singleton pregnancies are at increased risk and necessitate additional care
- Multiple pregnancy substantially increases the risks for both mother and baby and should be avoided
- Preterm labour is the major risk to the newborn
- National registries facilitate systematic follow up especially important with increased complexity of treatments

2019 WORLD CONGRESS

Transforming the Frontiers of Human Reproduction

www.iffs-reproduction.org

@IntFertilitySoc **[**] Int@FedFertilitySoc